Sodium Fluoride F 18 Injection* PET/CT Imaging for Prostate Cancer
Sodium Fluoride F 18 Injection*
(18F NaF) PET/CT Imaging
of Bone Metastases in Prostate Cancer

About Prostate Cancer

According to the American Cancer Society® (ACS), other than skin cancer, prostate cancer is the most common cancer in men in the United States. Approximately 1 man in 7 will be diagnosed with prostate cancer during his lifetime. In 2014, ACS estimates over 200,000 new cases of prostate cancer will be diagnosed and close to 30,000 men will die from this disease. Prostate cancer is the second leading cause of cancer death in American men, behind only to lung cancer. Primarily occurring in older men, approximately 6 patients in 10 are diagnosed aged 65 and older, with an average age of 66. Prostate cancer is rare before age 40.1

Prostate cancer metastases occur when cells break away from the tumor in the prostate and travel in the lymphatic system or the bloodstream to other areas of the body. Most cases of prostate metastasis occur in the bones and in the lymph nodes. Other common prostate cancer metastasis can occur in the lungs, liver and brain.2

About PET/CT

Positron emission tomography (PET) and computerized tomography (CT) are both state-of-the-art imaging techniques that allow physicians to pinpoint the location of cancer within the body before making treatment recommendations. The highly sensitive PET scan images the biology of disorders at the molecular level while the CT scan provides a detailed picture of the body’s anatomy. The PET/CT scan combines the strengths of these two well-established imaging modalities into a single procedure.

A CT scan is able to detect and localize changes in the body structure or anatomy such as the size, shape and exact location of a sizeable tumor.

A PET scan is very different from an ultrasound, X-ray, MRI or CT scan. A PET scan allows the physician to distinguish between living and dead tissue or between benign and malignant tumors. In order to achieve this, a PET radiopharmaceutical, which is injected into the patient, attaches to a target of interest.

By combining these two technologies, physicians can more accurately diagnose, localize and monitor cancer.

Target Patient Population for 18F NaF PET/CT Imaging

Clinical parameters needed to determine high-risk patients ideal for 18F NaF bone imaging are those with an abnormal prostate-specific antigen (PSA) test result and high Gleason score, thus indicating the cancer tissue is very different from normal, and the tumor is more likely to spread.

Value of PET/CT in Prostate Cancer

PET/CT is a highly effective, safe and painless imaging tool to support initial treatment strategy and subsequent treatment strategy depending on the PET radiopharmaceutical. For men diagnosed with prostate cancer, a number of treatment options exist, with differing side effects, and the choice can be difficult to make. A PET/CT scan supports the evaluation of prostate cancer by providing detailed information about the cancer, thus aiding in the determination of the best treatment options for the patient.

*See Full Indication and Important Safety Information on page 4.
See accompanying full Prescribing Information on page 5.
Specifically, PET/CT is a powerful, noninvasive tool for:

- Determining the extent of prostate cancer and whether it has spread to the lymph nodes or other parts of the body (i.e., bone). Traditional imaging technologies, such as magnetic resonance imaging (MRI) and CT, are often unable to detect prostate cancer cells that have spread to soft tissue in other parts of the body
- Helping assess how aggressive the prostate cancer is and what types of treatment are most appropriate
- Pinpointing the most appropriate sites in the body for radiation therapy
- Monitoring the effectiveness of medical treatments

Role of 18F NaF PET Imaging of Bone Metastases in Prostate Cancer

Bone metastases occur in up to 70% of patients with prostate cancer. These metastases may result in morbidity including pain in the bones, pathological fractures, spinal cord compression, bone marrow suppression and hypercalcemia. Evaluation of metastatic bone lesions is crucial for determining the therapeutic plan and improving patient prognosis.

Advances in PET/CT have brought unprecedented improvements in the resolution, sensitivity and efficiency of PET. These advancements, along with integrated multislice CT, have increased the value of 18F NaF PET imaging. 18F NaF has been determined by the U.S. Food and Drug Administration (FDA) to be safe and effective for imaging. This determination is limited to imaging for altered osteogenesis. 18F NaF is a highly sensitive bone-seeking PET tracer used for detection of skeletal abnormalities. Multiple published studies have demonstrated advantages of 18F NaF PET/CT scanning to detect metastatic disease to the bone than conventional bone scanning. The use of 18F NaF PET unlike conventional planar bone imaging can detect both lytic and blastic lesions.

18F NaF has desirable characteristics as a bone-imaging agent. It has high uptake in the bone with rapid blood clearance, producing a high bone-to-background ratio in a short time. PET/CT scanners provide quantitatively accurate, high-resolution images with improved sensitivity compared to conventional bone imaging.

18F NaF PET Radiopharmaceutical Usage

Per the FDA approved label, 18F NaF is injected intravenously by direct venipuncture or intravenous catheter.

- Adult activity is 185-370 MBq (5-10 mCi). A higher activity (370 MBq, 10 mCi) may be used in obese patients.
- Pediatric activity should be weight-based (2.22 MBq/kg, 0.06 mCi/kg), using a minimum and maximum activity of 18.5 to 185 MBq (0.5 to 5 mCi).

Impact on Changes in Intended Management with Patients with Prostate Cancer Using 18F NaF PET Imaging

PET imaging with 18F NaF changed treatment in more than half of men with prostate cancer and could prove to be a better tool than bone scintigraphy, according to an analysis from the National Oncologic PET Registry (NOPR) published online February 27, 2014 in the *Journal of Nuclear Medicine* (http://jnm.snmjournals.org/content/55/4/574.abstract).

See Full Indication and Important Safety Information on page 4. See accompanying full Prescribing Information on page 5.
Sodium Fluoride F 18 Injection for Intravenous Use*

INDICATIONS AND USAGE

Sodium fluoride F 18 injection is a radioactive diagnostic agent for positron emission tomography (PET) indicated for imaging bone to define areas of altered osteogenic activity.

IMPORTANT SAFETY INFORMATION

Allergic Reactions
As with any injectable drug, allergic reactions and anaphylaxis may occur. Emergency resuscitation equipment and personnel should be immediately available.

Cancer Risk
Sodium fluoride F 18 injection may increase the risk of cancer. Use the smallest dose necessary for imaging and ensure safe handling to protect the patient and healthcare worker.

Adverse Reactions
No adverse reactions have been reported based on a review of the published literature, publicly available reference sources and adverse drug reaction reporting systems. The completeness of the sources is not known.

Dosage Forms and Strengths
Multiple-dose vial containing 370–7,400 MBq/mL (10–200 mCi/mL) at EOS reference time of no-carrier-added sodium fluoride F18 in aqueous 0.9% sodium chloride solution. Sodium fluoride F 18 Injection is a clear, colorless, sterile, pyrogen-free and preservative-free solution for intravenous administration.

Sodium Fluoride F 18 injection is manufactured by
Siemens’ PETNET Solutions, 810 Innovation Drive, Knoxville, TN 39732

*See accompanying full Prescribing Information on page 5.
HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use Sodium Fluoride F 18 Injection safely and effectively. See full prescribing information for Sodium Fluoride F 18 Injection.

SODIUM FLUORIDE F 18 INJECTION
For Intravenous Use
Initial U.S. Approval: January 2011

INDICATIONS AND USAGE
Sodium Fluoride F 18 Injection is a radioactive diagnostic agent for positron emission tomography (PET) indicated for imaging of bone to define areas of altered osteogenic activity (1).

Dosage and Administration
• Sodium Fluoride F18 Injection emits radiation and must be handled with appropriate safety measures (2.1).
• Administer 300-450 MBq (8–12 mCi) as an intravenous injection in adults (2.4).
• Administer approximately 2.1 MBq/kg in children with a minimum of 19 MBq (0.5 mCi) and a maximum of 148 MBq (4 mCi) as an intravenous injection (2.5).
• Imaging can begin 1–2 hours after administration; optimally at one hour post administration (2.7).
• Encourage patients to void immediately prior to imaging the lumbar spine and bony pelvis (2.7).

Dosage Forms and Strengths
Multiple-dose vial containing 370–7,400 MBq/mL (10–200 mCi/mL) of no-carrier-added sodium fluoride F18 at the end of synthesis (EOS) reference time in aqueous 0.9% sodium chloride solution (3). Sodium Fluoride F 18 Injection is a clear, colorless, sterile, pyrogen-free and preservative-free solution for intravenous administration.

Contraindications
None (4).

WARNINGs AND PRECAUTIONS
• Allergic Reactions: As with any injectable drug product, allergic reactions and anaphylaxis may occur. Emergency resuscitation equipment and personnel should be immediately available (5.1).
• Cancer Risk: Sodium Fluoride F 18 Injection may increase the risk of cancer. Use the smallest dose necessary for imaging and ensure safe handling to protect the patient and health care worker (5.2).

ADVERSE REACTIONS
No adverse reactions have been reported for Sodium Fluoride F 18 Injection based on a review of the published literature, publicly available reference sources, and adverse drug reaction reporting systems (6).

To report SUSPECTED ADVERSE REACTIONS, contact NCI/DCTD/CIP at 1-301-496-9531 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

USE IN SPECIFIC POPULATIONS
• Pregnancy: No human or animal data. Any radiopharmaceutical, including Sodium Fluoride F18 injection, may cause fetal harm. Use only if clearly needed (8.1)
• Nursing: A decision should be made whether to interrupt nursing after Sodium Fluoride F 18 Injection administration or not to administer Sodium Fluoride F 18 Injection taking into consideration the importance of the drug to the mother. (8.3)
• Pediatrics: Children are more sensitive to radiation and may be at higher risk of cancer from Sodium Fluoride F18 injection (8.4).

See 17 for PATIENT COUNSELING INFORMATION

11 DESCRIPTION
11.1 Chemical Characteristics
11.2 Physical Characteristics
12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
12.2 Pharmacodynamics
12.3 Pharmacokinetics
13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
14 CLINICAL STUDIES
14.1 Metastatic Bone Disease
14.2 Other Bone Disorders
15 REFERENCES
16 HOW SUPPLIED/STORAGE AND HANDLING
17 PATIENT COUNSELING INFORMATION

*Sections or subsections omitted from the full prescribing information are not listed.
FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE

Sodium Fluoride F 18 Injection is indicated for diagnostic positron emission tomography (PET) imaging of bone to define areas of altered osteogenic activity.

2 DOSAGE AND ADMINISTRATION

2.1 Radiation Safety - Drug Handling

- Wear waterproof gloves and effective shielding when handling Sodium Fluoride F 18 Injection. Use appropriate safety measures, including shielding, consistent with proper patient management to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel, and other persons.
- Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides.
- Use aseptic technique to maintain sterility during all operations involved in the manipulation and administration of Sodium Fluoride F 18 Injection.
- The dose of Sodium Fluoride F 18 Injection should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed.
- The final dose for the patient should be calculated using proper decay factors from the time of End of Synthesis (EOS), and measured by a suitable radioactivity calibration system before administration [see Description (11.2)].

2.2 Radiation Safety - Patient Preparation

- To minimize the radiation-absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to ingest at least 500 mL of fluid immediately prior and subsequent to the administration of Sodium Fluoride F 18 Injection.
- Encourage the patient to void one-half hour after administration of Sodium Fluoride F 18 Injection and as frequently thereafter as possible for the next 12 hours.

2.3 Drug Preparation and Administration

- Calculate the necessary volume to administer based on calibration time and dose.
- Inspect Sodium Fluoride F 18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit.
- Do not administer Sodium Fluoride F 18 Injection containing particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations.
- Aseptically withdraw Sodium Fluoride F 18 Injection from its container.

2.4 Recommended Dose for Adults

Administer 300–450 MBq (8–12 mCi) as an intravenous injection.
2.5 **Recommended Dose for Pediatric Patients**
In reported clinical experience in approximately 100 children, weight based doses (2.1 MBq/kg) ranging from 19 MBq–148 MBq (0.5 mCi–4 mCi) were used.

2.6 **Radiation Dosimetry**
The age/weight- based estimated absorbed radiation doses (mGy/MBq) from intravenous injection of Sodium Fluoride F 18 Injection are shown in Table 1. These estimates were calculated based on human data and using the data published by the Nuclear Regulatory Commission [1] and the International Commission on Radiological Protection for Sodium Fluoride Injection [2]. The bone, bone marrow and urinary bladder are considered target and critical organs.
Table 1: Estimated Absorbed Radiation Doses after Intravenous Administration of Sodium Fluoride F 18 Injection

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenals</td>
<td>0.0062</td>
<td>0.012</td>
<td>0.018</td>
<td>0.028</td>
<td>0.052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain</td>
<td>0.0056</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone surfaces</td>
<td>0.060</td>
<td>0.050</td>
<td>0.079</td>
<td>0.13</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breasts</td>
<td>0.0028</td>
<td>0.0061</td>
<td>0.0097</td>
<td>0.015</td>
<td>0.030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI</td>
<td>Gallbladder wall</td>
<td>0.0044</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomach wall</td>
<td>0.0038</td>
<td>0.008</td>
<td>0.013</td>
<td>0.019</td>
<td>0.036</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.0066</td>
<td>0.012</td>
<td>0.018</td>
<td>0.028</td>
<td>0.052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper large intestine wall</td>
<td>0.0058</td>
<td>0.010</td>
<td>0.016</td>
<td>0.026</td>
<td>0.046</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower large intestine wall</td>
<td>0.012</td>
<td>0.016</td>
<td>0.025</td>
<td>0.037</td>
<td>0.063</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart wall</td>
<td>0.0039</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.019</td>
<td>0.025</td>
<td>0.036</td>
<td>0.053</td>
<td>0.097</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>0.0040</td>
<td>0.0084</td>
<td>0.013</td>
<td>0.021</td>
<td>0.039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lungs</td>
<td>0.0041</td>
<td>0.0084</td>
<td>0.013</td>
<td>0.020</td>
<td>0.039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>0.0060</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.011</td>
<td>0.016</td>
<td>0.023</td>
<td>0.036</td>
<td>0.063</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.0048</td>
<td>0.0096</td>
<td>0.015</td>
<td>0.023</td>
<td>0.044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red marrow</td>
<td>0.028</td>
<td>0.053</td>
<td>0.088</td>
<td>0.18</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td>0.0040</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spleen</td>
<td>0.0042</td>
<td>0.0088</td>
<td>0.014</td>
<td>0.021</td>
<td>0.041</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testes</td>
<td>0.0078</td>
<td>0.013</td>
<td>0.021</td>
<td>0.033</td>
<td>0.062</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thymus</td>
<td>0.0035</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.0044</td>
<td>0.0084</td>
<td>0.013</td>
<td>0.020</td>
<td>0.036</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary bladder wall</td>
<td>0.25</td>
<td>0.27</td>
<td>0.4</td>
<td>0.61</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uterus</td>
<td>0.019</td>
<td>0.023</td>
<td>0.037</td>
<td>0.057</td>
<td>0.099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other tissue</td>
<td>N/A</td>
<td>0.010</td>
<td>0.015</td>
<td>0.024</td>
<td>0.044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective Dose Equivalent mSv/MBq</td>
<td>0.027</td>
<td>0.034</td>
<td>0.052</td>
<td>0.086</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.7 Imaging Guidelines

- Imaging of Sodium Fluoride F 18 Injection can begin 1–2 hours after administration; optimally at 1 hour post administration.
• Encourage the patient to void immediately prior to imaging the fluoride F18 radioactivity in the lumbar spine or bony pelvis.

3 DOSAGE FORMS AND STRENGTHS
Multiple-dose vial containing 370–7,400 MBq/mL (10–200 mCi/mL) at EOS reference time of no-carrier-added sodium fluoride F18 in aqueous 0.9% sodium chloride solution. Sodium Fluoride F 18 Injection is a clear, colorless, sterile, pyrogen-free and preservative-free solution for intravenous administration.

4 CONTRAINDICATIONS
None.

5 WARNINGS AND PRECAUTIONS

5.1 Allergic Reactions
As with any injectable drug product, allergic reactions and anaphylaxis may occur. Emergency resuscitation equipment and personnel should be immediately available.

5.2 Radiation Risks
Sodium Fluoride F 18 Injection may increase the risk of cancer. Carcinogenic and mutagenic studies with Sodium Fluoride F18 injection have not been performed. Use the smallest dose necessary for imaging and ensure safe handling to protect the patient and health care worker [see Dosage and Administration (2.1)].

6 ADVERSE REACTIONS
No adverse reactions have been reported for Sodium Fluoride F 18 Injection based on a review of the published literature, publicly available reference sources, and adverse drug reaction reporting systems. However, the completeness of these sources is not known.

7 DRUG INTERACTIONS
The possibility of interactions of Sodium Fluoride F 18 Injection with other drugs taken by patients undergoing PET imaging has not been studied.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy
Pregnancy Category C
Any radiopharmaceutical including Sodium Fluoride F 18 Injection has a potential to cause fetal harm. The likelihood of fetal harm depends on the stage of fetal development, and the radionuclide dose. Animal reproductive and developmental toxicity studies have not been conducted with Sodium Fluoride F 18 Injection. Prior to the administration of Sodium Fluoride F 18 Injection to women of childbearing potential, assess for presence of pregnancy. Sodium Fluoride F 18 Injection should be given to a pregnant woman only if clearly needed.
8.3 Nursing Mothers
It is not known whether Sodium Fluoride F 18 Injection is excreted into human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants, a decision should be made whether to interrupt nursing after administration of Sodium Fluoride F 18 Injection or not to administer Sodium Fluoride F 18 Injection, taking into account the importance of the drug to the mother. The body of scientific information related to radioactivity decay, drug tissue distribution and drug elimination shows that less than 0.01% of the radioactivity administered remains in the body after 24 hours (10 half-lives). To minimize the risks to a nursing infant, interrupt nursing for at least 24 hours.

8.4 Pediatric Use
In reported clinical experience in approximately 100 children, weight based doses (2.1 MBq/kg) ranging from 19 MBq–148 MBq (0.5 mCi - 4 mCi) were used. Sodium Fluoride F18 was shown to localize to areas of bone turnover including rapidly growing epiphyses in developing long bones. Children are more sensitive to radiation and may be at higher risk of cancer from Sodium Fluoride F18 injection.

11 DESCRIPTION
11.1 Chemical Characteristics
Sodium Fluoride F 18 Injection is a positron emitting radiopharmaceutical, containing no-carrier-added, radioactive fluoride F18 that is used for diagnostic purposes in conjunction with PET imaging. It is administered by intravenous injection. The active ingredient, sodium fluoride F18, has the molecular formula Na\(^{18}\text{F}\) with a molecular weight of 40.99, and has the following chemical structure:

\[\text{Na}^+ 18\text{F}^- \]

Sodium Fluoride F 18 Injection is provided as a ready-to-use, isotonic, sterile, pyrogen-free, preservative-free, clear and colorless solution. Each mL of the solution contains between 370 MBq to 7,400 MBq (10 mCi to 200 mCi) sodium fluoride F18, at the EOS reference time, in 0.9% aqueous sodium chloride. The pH of the solution is between 4.5 and 8. The solution is presented in 30 mL multiple- dose glass vials with variable total volume and total radioactivity in each vial.

11.2 Physical Characteristics
Fluoride F18 decays by positron (β+) emission and has a half-life of 109.7 minutes. Ninety-seven percent of the decay results in emission of a positron with a maximum energy of 633 keV and 3% of the decay results in electron capture with subsequent emission of characteristic X-rays of oxygen. The principal photons useful for diagnostic imaging are the 511 keV gamma photons, resulting from the interaction of the emitted positron with an electron (Table 2). Fluorine F18 atom decays to stable \(^{18}\text{O}\)-oxygen.

Table 2: Principal Emission Data for Fluoride F18
<table>
<thead>
<tr>
<th>Radiation/Emission</th>
<th>% per Disintegration</th>
<th>Mean Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positron (β^+)</td>
<td>96.73</td>
<td>249.8 keV</td>
</tr>
<tr>
<td>Gamma (\pm)*</td>
<td>193.46</td>
<td>511.0 keV</td>
</tr>
</tbody>
</table>

* Produced by positron annihilation

The specific gamma ray constant for fluoride F18 is 5.7 R/hr/mCi (1.35 x 10^{-6} Gy/hr/kBq) at 1 cm. The half-value layer (HVL) for the 511 keV photons is 4.1 mm lead (Pb). A range of values for the attenuation of radiation results from the interposition of various thickness of Pb. The range of attenuation coefficients for this radionuclide is shown in Table 3. For example, the interposition of an 8.3 mm thickness of Pb with a coefficient of attenuation of 0.25 will decrease the external radiation by 75%.

Table 3: Radiation Attenuation of 511 keV Photons by Lead (Pb) Shielding

<table>
<thead>
<tr>
<th>Shield Thickness (Pb) mm</th>
<th>Coefficient of Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.50</td>
</tr>
<tr>
<td>8</td>
<td>0.25</td>
</tr>
<tr>
<td>13</td>
<td>0.10</td>
</tr>
<tr>
<td>26</td>
<td>0.01</td>
</tr>
<tr>
<td>39</td>
<td>0.001</td>
</tr>
<tr>
<td>52</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Table 4 lists the fraction of radioactivity remaining at selected time intervals from the calibration time. This information may be used to correct for physical decay of the radionuclide.

Table 4: Physical Decay Chart for Fluoride F18

<table>
<thead>
<tr>
<th>Time Since Calibration</th>
<th>Fraction Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>0*</td>
<td>1.00</td>
</tr>
<tr>
<td>15 minutes</td>
<td>0.909</td>
</tr>
<tr>
<td>30 minutes</td>
<td>0.826</td>
</tr>
<tr>
<td>60 minutes</td>
<td>0.683</td>
</tr>
<tr>
<td>110 minutes</td>
<td>0.500</td>
</tr>
<tr>
<td>220 minutes</td>
<td>0.250</td>
</tr>
<tr>
<td>440 minutes</td>
<td>0.060</td>
</tr>
<tr>
<td>12 hours</td>
<td>0.011</td>
</tr>
<tr>
<td>24 hours</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

* Calibration time

12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
Fluoride F18 ion normally accumulates in the skeleton in an even fashion, with greater deposition in the axial skeleton (e.g. vertebrae and pelvis) than in the appendicular skeleton and greater deposition in the bones around joints than in the shafts of long bones.

12.2 Pharmacodynamics
Increased fluoride F18 ion deposition in bone can occur in areas of increased osteogenic activity during growth, infection, malignancy (primary or metastatic) following trauma, or inflammation of bone.

12.3 Pharmacokinetics
After intravenous administration, fluoride F18 ion is rapidly cleared from the plasma in a biexponential manner. The first phase has a half-life of 0.4 h, and the second phase has a half-life of 2.6 h. Essentially all the fluoride F18 that is delivered to bone by the blood is retained in the bone. One hour after administration of fluoride, F18 only about 10% of the injected dose remains in the blood. Fluoride F18 diffuses through capillaries into bone extracellular fluid space, where it becomes bound by chemisorption at the surface of bone crystals, preferentially at sites of newly mineralizing bone.

Deposition of fluoride F18 in bone appears to be primarily a function of blood flow to the bone and the efficiency of the bone in extracting the fluoride F18. Fluoride F18 does not appear to be bound to serum proteins.

In patients with normal renal function, 20% or more of the fluorine ion is cleared from the body in the urine within the first 2 hours after intravenous administration.

13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
Studies to assess reproductive toxicity, mutagenesis and carcinogenesis potential of Sodium Fluoride F 18 Injection have not been performed.

14 CLINICAL STUDIES
14.1 Metastatic Bone Disease
The doses used in reported studies ranged from 2.7 mCi to 20 mCi (100 MBq to 740 MBq), with an average median dose of 10 mCi (370 MBq) and an average mean dose of 9.2 mCi (340 MBq). In PET imaging of bone metastases with Sodium Fluoride F 18 Injection, focally increased tracer uptake is seen in both osteolytic and osteoblastic bone lesions. Negative PET imaging results with Sodium Fluoride F 18 Injection do not preclude the diagnosis of bone metastases. Also, as benign bone lesions are also detected by Sodium Fluoride F 18 Injection, positive PET imaging results cannot replace biopsy to confirm a diagnosis of cancer.
14.2 Other Bone Disorders
The doses used in reported studies ranged from 2.43 mCi to 15 mCi (90 MBq to 555 MBq), with an average median dose of 8.0 mCi (300 MBq) and an average mean dose of 7.6 mCi (280 MBq).

15 REFERENCES

2. Radiation Dose to Patients from Radiopharmaceuticals, ICRP publication 53, Ann ICRP, 18 pages 15 and 74, 1987

16 HOW SUPPLIED/STORAGE AND HANDLING

Sodium Fluoride F 18 Injection is supplied in a multiple-dose Type I glass vial with elastomeric stopper and aluminum crimp seal containing between 370 and 7,400 MBq/mL (10–200 mCi/mL) of no carrier-added sodium fluoride F18, at the EOS reference time, in aqueous 0.9% sodium chloride solution. The total volume and total radioactivity per vial are variable. Each vial is enclosed in a shielded container of appropriate thickness.

The product is available in a 30 mL vial configuration with a variable fill volume. The NDC number is:

40028-512-30 (30 mL)

Storage

Store at 25°C (77°F) in a shielded container; excursions permitted to 15–30°C (59–86°F). Use the solution within 12 hours of the EOS reference time.

Handling

Receipt, transfer, handling, possession, or use of this product is subject to the radioactive material regulations and licensing requirements of the U.S. Nuclear Regulatory Commission, Agreement States or Licensing States as appropriate.

17 PATIENT COUNSELING INFORMATION

17.1 Pre-study Hydration
Encourage patients to drink at least 500 mL of water prior to drug administration.
17.2 Post-study Voiding
To help protect themselves and others in their environment, patients should take the following precautions for 12 hours after injection: whenever possible, use a toilet and flush several times after each use; wash hands thoroughly after each voiding or fecal elimination. If blood, urine or feces soil clothing, wash the clothing separately.

Manufactured for:
National Cancer Institute
Division of Cancer Treatment and Diagnosis
Cancer Imaging Program
Bethesda, MD 20892

Manufactured by:
Siemens Molecular Imaging
PETNET Solutions Inc.
810 Innovation Drive
Knoxville, TN 37932

Distributed by:
Siemens Molecular Imaging
PETNET Solutions Inc.
810 Innovation Drive
Knoxville, TN 37932
References
5. Jadvar, H. Prospective Evaluation of 18F-NaF and 18F-FDG in Detection of Occult Metastatic Disease in Biochemical Recurrence of Prostate Cancer. Clinical Nuclear Medicine; 2012 July; 37